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ON NORMAL p-SUBGROUPS WITH LARGE
CENTERS WHICH CANNOT BE CONTAINED
IN THE FRATTINI SUBGROUP

BY
REINHARD LAUE

ABSTRACT

Let K be a characteristic subgroup of a p-group H such that H induceson K a
sufficiently large group of automorphisms. Then H cannot be embedded as a
normal subgroup contained in the Frattini subgroup in any finite group. The
group H may have a large center without any characteristic subgroup of H
properly contained in it. Examples are given for such H with Z(H) elementary
abelian of arbitrary dimension.

1. Introduction

All groups in this note are assumed to be finite. By X we denote the class of
nilpotent groups which cannot be embedded as normal subgroups contained in
the Frattini subgroup in some finite group. Gaschiitz {1] gave a sufficient
condition for a nilpotent group to lie in X, which was used by various authors.
There was one result of Stitzinger 10}, Hill and Wright [3] which was basic for
recent work on the problem of finding further sufficient conditions for a
nilpotent group to lie in X.

THeOREM (Stitzinger [10], Hill and Wright [3]). Let H be a p-group with an
abelian characteristic subgroup A such that |A NZ(H)|=p. A =Z,(H) but
AZZ(H). Then H € X.

Recently Hill [2] proved that for an odd prime p a p-group H with a
characteristic subgroup K such that |K |>|K N Z(H)| =p is in X, and Makan
[6] classified all p-groups, p odd or even, with cyclic center that lie in X.

All these theorems require that the p-group H has a characteristic subgroup
of order p that lies in X. To make further progress it seems to be necessary to
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have conditions which are free from this restriction. It is therefore the aim of this
article to give such results.

2. Results

Following the concept of Stitzinger, Hill and Wright we consider a characteris-
tic subgroup K of H. In addition we consider H, the group of automorphisms of
K that H induces on K. Suitable restrictions on the pair (K, H) imply H € X.
We begin with two extremes: no restrictions on H in the first case and no
restrictions on K in the second.

THeorREM 1. Let K be a standard wreath product of two p-groups. Then
HeX.

THEOREM 2. Let H be a Sylow p-subgroup of Aut(K). Then H € X.

Our other results will impose restrictions on K as well as on H. Since by a
well-known theorem of P. Hall K;(H) is abelian, if the class of H is less than 2i,
H has in general several characteristic abelian subgroups. So we assume in the
following that K is abelian. Then H can be considerably smaller than in
Theorem 2.

THEOREM 3. Let K be non-homogeneous abelian. If H contains O, (Aut (K)),
the largest normal p-subgroup of Aut(K), then H € X.

Note that by Shoda [8] | O,(Aut(K))|=p™, where

r—1
M= 3 @0 ) ()

and the homogeneous components of exponent p' of K have order p. Since
this is still a very large power of p, we analyze the structure of Aut(K) more
precisely. Thus we obtain an independent proof of Shoda’s results and additional
information on the subgroup structure of Aut(K). This gives the following
improvement of Theorem 3.

THEOREM 4. Let K be non-homogeneous abelian with homogeneous compo -
nents of exponent p' and order p™, n; =0 fori =1,---,r. If n,# 0 and H contains
one of the normal p-subgroups A, and B; of Aut(G), then H € X. The groups A,
and B; both have order p™, where

il
m; =(ni+"‘+ny)(n,-+1+"'+n,)+2(2n,'+nj+1+"'+n.)(n,-+1+"'+nr).
i=1

If we set
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G = Canns G (KD () € reas (QUK) N, (K) /(K N T, (KD),
the definitions of A, and B; are
A = C N Cauwe)(Ui-1(K)/U: (K)) and
B: = C N Cpue) (QU(K)NUi-(K)).

Obviously the best bound in Theorem 4 is obtained if n, # 0. We formulate
this as a corollary.

CoroLLAarY 1. Let K be as in Theorem 4 and n,#0. Then HE X if
[H|zp™, m=(Zi..n) (i1 n), and either Q(K)O(K)=Z(H) or [K,H]=
Q,(K)NT,(K).

We point out that in Corollary 1 no explicit knowledge of Aut(K) is required.
It can be checked in the group itself whether the hypotheses are satisfied or not.
This is also a feature of our further results. In addition they also apply to the case
of homogeneous abelian K which has been excluded so far.

Tueorem 5. Let [K,H]|=Cx(H)=KNZ(H). Then H € X, if

(i) there is a complement T of Cx (H ) in K such that [K, H] T is characteristic in
H and the number of complements of [K,H] in [K,H]T is at most |H |, or

(i) there is a complement T of [K, H] in K such that Cx (H) N T is characteris-
tic in H and the number complements of Cx (H)/Cxk(H)NTinK/Cx(H)N Tis at
most |H |.

Of course the condition that [K, H] T or Cx(H) N T be characteristic in H is a
heavy restriction. If (K, H] = Cx (H ) this hypothesis is automatically satisfied. So
we have an important special case.

CororLary 2. Let [K,H]= C«<(H) and [K, H) be complemented in K. Then
H € X, if the number of complements is at most |H |. Especially if [K,H]=
Cx(H) is complemented in K and | H |z |[K, H}|%, where | K/[K,H]| = p*, then
HEeX.

From these results one can deduce the above cited Theorem of Stitzinger, Hill
and Wright as well as the following dualization.

TueoreMm 6. If |[K/[K,H]|=p and |K|#p, then H € X.

Finally we give some examples of p-groups that lie in X and have a large
center. Of course one can apply Theorem 1 to construct such examples, but these
have very large orders. Instead we construct p-groups which satisfy the
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hypotheses of Theorem 6 and Corollary 2 and have minimal order with respect
to these properties. In addition the center may be any elementary abelian
p-group and every automorphism of the center extends to an automorphism of
the whole group. In particular no proper subgroup of the center is characteristic
in the whole group.

3. Notation

Our notation is mostly standard, we refer to Huppert’s book [4]. For any
subgroup U of a group G we define the normalizer N aucy(U) of U in the
automorphism group Aut(G) to be the subgroup of those automorphisms that
leave U invariant. If F is a factor of G, the centralizer C su6y(F) of F in Aut(G)
is the subgroup of those automorphisms that induce the identity map on F.

4. Stabilizing automorphism groups

Most of our results are based on the observation that some automorphism
groups of split extensions also split.

LEMMA 1. Let M and N be normal subgroups of a group G such that
M =Z(N).

(i) If N has a complement H in G define  to be the set of all complements of M
in MH.

(ii) If M has a complement H in G define O to be the set of those complements U
of M, for which NNH=NNU.

Then in each case D = C au6y(N) N C awiy(G /M) acts faithfully as a regular
group of permutations on . In particular |D |=|9| and any automorphism
group A of G that contains D and acts on 9 splits over D.

Proor. First we show that in each case D acts on 9, which is not empty,
since H € . Now let H, € . In case (i) for each « € D we have HiNM =
(HiNM)*=1and H'M = (HM)* = (HM)* = HM, since a centralizes G /M.
So Hf€®. In case (i) MHi=(MH,)"=G and NNHi=(NNH,)" =
N N H,, since a centralizes M. So again Hf € 9.

Next we observe that D acts fixpointfreely on §. In case (i) H, is again a
complement of N in G: We have NH,=NMH,=NMH =G, and since
(NNH)M=NNHM=NNHM=(NNH)M =M, also NNH, =
M N H;=1. Therefore any @ € Np (H,) centralizes H, and N and is thus trivial
on G. In case (ii) H, is by definition a complement of M in G. Therefore again
any a € Np (H,) centralizes H, and M and is thus trivial on G.
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It remains to show that in each case D is transitive on . So let H, and
H,€ 9. In case (i) for each g€ G/N and for i = 1,2 there is exactly one
h(g§)E H, such that g = Nh:(g). Since even Mh(g)= Mhi(g), we have
h(g) 'h(g)E M = Z(N). In case (ii) for each § € G/M and for i = 1,2 there is
exactly one h; (§) € H; such that § = Mh, (g). Since Nh,(g) = Nh,(g), we have
hi(g)'hog) €E N = Cs(M) in this case. Now for each g € g there is some n € N,
respectively n € M in case (ii), such that g = nh(g). We define @ : G — G by
a :nh(g)» nhy(g), where Nh,(g)= Nhy(g), respectively Mh,(g)= Mhi(g).
Then « is bijective and we show that « is a homomorphism. If g, = n,h(g,) and
g: = n2h(g,), then

(8:82)" = (nihi(§1) n2hy(82))" = (nun " "hi(§1) h(g2))"

k(@)1
2

= (nlnﬁ"(’z‘)*'hl(glg'z))" =mn h2(g_1g-2)
= nln;‘(g‘)_th(g-l)hz(g_z) = nxhz(gn)n?'“"“h’(g‘)hz(gz)

= mhy(g)n:haAg2) = g1gs,

since in each case n, commutes with h,(g,) 'h»(g:). So a is an automorphism of
G which maps H, onto H, and induces the identity on N and G /M in both
cases.

We remark that this result is a generalization of Hilfssatz VI 7.14 of
Huppert [4].

For our applications of Lemma 1 we collect some additional information on
the stabilizing group D.

Lemma 2. Let M =N be two normal subgroups of a group G and let
U=D = Cauc)(N)N Canec)(G/M).

(i) If G/N is generated by d elements, then D can be embedded into
Z(M) X ---xX Z(M), where the direct product has d factors.

(i) If M = Z(G) then D =Hom(G /N, M). If, in addition, M =[G, U] and
N=Cc(U),|M|=p*and | G/N|=p’, then the minimal number of generators
of U is at least m = max(r/s,s/r).

Proor. (i) follows from [5, prop. 1.1].

(il) Each a € D defines a homomorphism f, : g » g '¢g* from G into M with
kerf, = N. Obviously the map ¢ : a » f, is injective. On the other hand each
homomorphism f: G — M with kerf = N defines an automorphism a; € D by
a;: g~ gf(g) for each g € G. We claim that ¢ is a homomorphism. For all
a,B €D and g € G we have g = (gf.(g))® = gfa(g)f.(g), since B centralizes
M and g** = gf.s(g). Thus for all g € G, f.s(g) = f.(8)fs(g). Therefore ¢ is an
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isomorphism from D onto the subgroup of those elements of Hom (G, M) that
contain N in their kernel.

Let U =(a;, -, a.) and ¢(a:) = f,, where ¢ is defined as in the proof of (ii).
Since N =kerf, we have |imf,|S|G/N|=p" for i=1,---,n If we set
E =(imf,|i=1,---,n), then |E|=<p™ Now U centralizes G /E such that
[G, U] = E. Therefore p° = p™, equivalently s/r < n. on the other hand im f, =
M implies | G /kerf,|<|M|=p*fori=1,---, n If weset R = (1 kerf, then
|IG/R|=p™ Now U centralizes R such that R = N. Therefore |G/R|zp’
and p™ = p’, equivalently n 2 r/s. Thus the minimal number of generators of U
is at least m = max(r/s,s/r).

5. Automorphism groups of abelian groups

Speiser [9] has analyzed the structure of the automorphism group of a finite
abelian group by induction along the descending chain of the U, (G). This
group-theoretic procedure allows to determine the action of certain subgroups of
Aut(G) somewhat better than the ring-theoretic approach of Shoda [8]. We
therefore follow Speiser’s concept. We look for normal p-subgroups of Aut(G)
that induce a transitive permutation group on a certain characteristic family of
subgroups of G.

ProrosiTioN 1. Let G = G, X G, be an abelian p-group with a homogeneous
component G, of order p™ and exponent p. Let m be the minimal number of
generators of G,. Set A = Cauwc(Ui(G)). Then the two normal p-subgroups
A= Ca(QU(G)) and A= Ca(G/U(G)) of Aut(G) are elementary abelian of
order p™ ™™ The intersection D = A, N A, has order p™ and lies in Z(A).
A,/ D can be regarded as a regular permutation group on the set of all complements
of Q(G)U(G)/U(G) in G/U(G). A:/D can be regarded as a regular
permutation group on the set of all complements of U,(G)NU(G) in Q(G). The
product A\ A is just B = Cs(Q(G)/Q(G) N U(G)), and A | B is isomorphic to
GL(N,,p).

Proor. We denote by 9, the set of all complements of U,(G)N Q,(G) in
Q(G) and by 9, the set of all complements of Q,(G)U(G)/UV«(G)in G /U(G).
We claim that G,€ $, and G,/U\(G)€E 9.. First U,(G)=U:(G.)= G, and
0(G,) =U(G,), since G, has no homogeneous component of exponent
p- Therefore (Q(G)NU(G))G,=U(G)G, N U(G)=Q(U:(G)HQ(G)) =
Q{(G) G, = Q(G) and Q(GYNUL(G)NG,=U(G,) =1, such that G, € 9,.
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Similarly G, N Q.(G)U«(G) = (Q(G)N G,)U(G) = Q(G)U:(G) = U(G) and
GQ0(G)U\(G) = G,G, = G, such that G,/U(G) € H..

Now O,(G)/Q.(G)NU(G) is isomorphic to G, such that A induces on the
factor an automorphism group which is contained in Gl(n,, p). Each automorph-
ism of G, can be extended to an automorphism of G that centralizes G, and thus
lies in A. Therefore A /B = Gl(n,,p). Now B centralizes Q,(G)NU,(G) and
Q.(G)/A(G)NUV(G). Therefore by Lemma 1, B acts fixpointfreely on ..
Since B contains C; = C awc)(G2) N Caw)(G /1 Q(G) N U,(G)), which is al-
ready regular on $, by Lemma 1, also B acts regularly on 9,. As well B
centralizes G /Q,(G)U,(G) and U,(G)(G)/U,(G), since the latter factor is
covered by Q(G)/Q(G)NU(G). Therefore again by Lemma 1, B acts
fixpointfreely on 9. Since B contains C,=
Can)(G/G)N Cany(U(G)Q(G)), which is already regular on 9, by
Lemma 1, also B acts regularly on §.. By Lemma 2 (i) we obtain |B/A,|=
p"™ =|B/A,|. Now C, is already contained in A; and C: is contained in A,.
Therefore A, covers B/A, and A, covers B/A; such that A;A,=B and
|IB/A;N A,|=p>™ In addition A, is regular on ©; and A, is regular on ..
Finally we have C au),(U(G)) = Cauw) (G 1(G)), see Speiser [9, p. 129], such
that A= Caucy((G)) N C ane (G 12:(G)) and A,=
C au)(U(G)) N C o) (G /U(G)) are elementary abelian by Lemma 2. In
addition, the Three-Subgroup-Lemma yields

[D, A, G]=[A, G,D][G, D, A]=[Q(G), D][Q(G) N V(G), A] = 1

such that D = Z(A).

Observing that every automorphism of U,(G), can be extended to an au-
tomorphism of G, one has Aut(G)/ C auc)(U:(G)) = Aut(U,(G)). So inductive
application of Proposition 1 gives a description of Aut(G).

ProrosiTiON 2. Let G = G, X - - X G, be an abelian p-group with homogene -
ous components G, of exponent p' and order p™ for i =1,---,r. We set F, =
Q(G)NUV(G)Q(G)NV(G) and 9, ={H, IH.- is a complement of
Q(G)NUV(G) in WGC)NU(G), & ={K JK,— is a complement of
U (G)Q(G)NU.(G))/U:(G) in Ui(G)/U:(G)} for i=1,---,r. Then
Aut(G) contains normal p-subgroups A; and B; that act transitively on ;
respectively & for i=1,---r. If we set G =Cruc(U:(G)HN
N Cawcy(F), then Ai=C NCaucfUiG)YU(G)) and B =
Ci N Cauwi(U(G)N Ui-i(G)). The orders are
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i—3
[Ai|=|B|=p™m=>0Cn+na+ +n)(na,++n)
=

+(n+ o+t n) (ot n).

Proor. We proceed by induction on i. For i =1 we apply Proposition 1. So
let Proposition 2 be proved for U,(G). Then Aut{G)/C auic{U:(G)) contains
normal p-subgroups A 3/C auc(U(G)) and B 1/ C au{U:(G)) as claimed. The
definitions of A% and B¥ are

A¥= CAU,(G)(U,- (UI(G))) N CAut(G)(Ui—I(UI(G))/Ui (UI(G))) n ,(jz CA“‘(G)(E)

= Cruc(Uis(G)) N Coaue (U (GG ) N m C auior(F)

and similarly
B = CawclUii(G) N Caua((G)NT(G)N 02 C auo (F).

Now Aii=ATN Cawe(F) and B = B¥ N CapoF) for i=1,---,r—1,
and A, and B, are just A, and A: in Proposition 1. Since Cau)(U(G)) is
contained in A% and B, both groups induce on F, the full automorphism
group GL(n,,p) of F. Therefore A%*= A, Cruc)(U(G)) and B*=
Bi:1 Cauwc(U(G)) and A;y N Cauc(U(G))=Ci=B;.,.N C auc(Ui(G)). By
inductive hypothesis A % is transitive on 9., and since C au6,(U:(G)) acts trivial
on 9.1, also A, is transitive on ;.. By the same argument B,., is transitive on
$ti.1. The formula for the orders of the A; and B; easily follows by induction
from Proposition 1.

Remark. For i =r in Proposition 2 we obtain C, = A, = B, = O,(Aut(G))
and | Aut(G)/C,|=1I;_,| GL(n, p)|. Since Aut(G) has a subgroup isomorphic
to I1;_, Aut(G,), which covers Aut(G)/C, in fact Aut(G)/C, =TI, GL(n,p).

6. Proofs of the Theorems

Most of our results are consequences of the following well-known fact.

Lemma 3. Let G act on a set § and let N be a normal subgroup of G that acts
transitively on 9. Then for each H € $ we have G = NNg(H). In particular
[©]>1 implies NZ D(G).

This follows easily by the Frattini argument.
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Now for all of our proofs we assume that our p-group H is a normal subgroup
of a group G contained in ®(G). We denote by f the natural homomorphism
from G into Aut(K) such that f(H)= H = f (®(G)) = ®(f(G)) by Gaschiitz’s
Satz 3 [1]. So we only have to find a contradiction in this situation for each
theorem.

Proor oF THEOREM 1. Let K = AwrB, where A and B are p-groups. If B
and A have order two, then K is the dihedral group of order 8 and K € X, in
particular H € X. In all other cases by P. M. Neumann’s theorem 9.1 [7] the base
group of K is characteristic in K. Therefore Aut(G) acts as a permutation group
on the set § of all complements of the base group. By P. M. Neumann’s theorem
10.1[7} In(K) is transitive on §. Therefore Lemma 3 gives the contradiction.

Proor oF THEOREM 2. By Huppert [4, III 3.8] each prime divisor of
[P(f(G))| divides | f(G)/P(f(G))|. But the hypothesis implies that ®(f(G))
contains a Sylow p-subgroup of f(G), a contradiction.

Proor OF THEOREM 3. By the remark after the proof of Proposition 2,
O,(Aut(K)) has a supplement in Aut(K) if K is not homogeneous. So by our
hypothesis H has a supplement in f(G), a contradiction.

ProOF OF THEOREM 4. If n;#0, then ©, and &, have more than one
element. Since Aut(K) acts on £, and §t,, also f(G) acts on these sets. If A, = H
or B: = H, then by Proposition 2 H is transitive on one of these sets. Therefore
Lemma 3 gives the contradiction.

Proor oF CoroLLARY 1. The hypotheses imply either H = A, or H = B,.
Therefore we have a special case of Theorem 4.

ProoF oF THEOREM 5. Obviously
H =D = Crux(Cx (H)) N CausK/[K, H]).

Our hypotheses (i) and (ii) correspond to (i) and (ii) in Lemma 1 such that D
acts regularly on the set of complements of [K, H] in [K, H]T in case (i),
respectively of Cx(H)/Cx(H)NT in K/Cx(H)N T in case (ii). Thus our
hypothesis on the order of f(H) gives f(H)= D in each case. The hypothesis
that [K, H] T, respectively Cx(H) N T, be characteristic in G yields that G acts
on . Therefore Lemma 3 gives the contradiction.

We have to prove the second part of Corollary 2. So let |H |z |[K, H]|,
where | K/[K, H]| = p“. Since H centralizes K/[K, H] and [K, H], H lies in
D = Caua([K, H) N CaucK/[K, H]). By Lemma 2 (i) |D[=|[K H]I",
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where n is the minimal number of generators of K/[K, H]. Since |[K, H]|* =
|H|=|D|=|[K, H]|", we have n = d and H = D. By Lemma 1, D is equal to
the number of complements of [K, H] in K. So we can apply Theorem 5.

Proor oF THEOrREM 6. If C =K and C is normal in G, then ®(G/C)=
®(G)/C, see Gaschiitz [1, Satz 2]. Therefore also H/C = ®(G/C) and we can
assume C =1. If [K, H] = ®(K), then K is cyclic and has only characteristic
subgroups. Then we set U,(K)=1. We have |[K|[=p? and H is a Sylow
p-subgroup of Aut(K). Therefore we can apply Theorem 2. If [K, H] = ®(K),
then we set ®(K) =1 and K is elementary abelian. Now [K, H, H] = [K, H] and
{K, H, H] is normal in G, since K and H are normal in G. Therefore we assume
[K, H,H] =1 and we have [K, H] = C«(H) and | K/[K, H]| = p. Now Lemma 2
(iii) shows that | H | is at least |[K, H]|. Since K is elementary abelian, we can
apply Corollary 2 to obtain the result.

In a dual way we obtain a proof for the Theorem of Stitzinger, Hill and
Wright, cited in the introduction. Instead of ®(A) we consider Q,(A). If
ANZH)=Q,(A), then A is cyclic and we can assume |[A |=p? Since
A#ZZ(H), H induces on A an automorphism group of order p. Then Theorem
2 yields a contradiction. If (,(A)>A NZ(H), then we set K=Q,(A).
Now [K,H,H])=[Z,H),H H]=1, and 1#[K, H]|=Ck(H)=KNZ(H)=
A N Z(H) implies [K,H] = C«(H) and |[K, H]| = p. Again Lemma 2 shows
that | H | =|K/[K, H]|, and we can apply Corollary 2 to obtain the result.

7. Examples of special p-groups that lie in X

Our first example settles the case p = 2. Here we can construct a semidirect
product which has the required properties.

Let V be elementary abelian of order 2", n 2 3, and W a subgroup of order
2""'. Then by Lemma 2 (ii) the automorphism group D = Cauw (W) is
isomorphic to W. Let G be the semidirect product VD, where D actson V in
the natural way. We claim that V is a characteristic subgroup of G So let
a € Aut(G) and K = V= Then K = Cg(K), since V = Cs(V). Now WD =
W x D is abelian of order | W ?#| V|. So K cannot be contained in WD. Let
g €K and g& WD. Then g = vd with some v € V\W and some d € D. Since
W = Cv(D), we have [v,d] # 1 for d# 1. On the other hand [v,d] = (vd)’ =1,
since K is elementary abelian. So d =1 and V = K. As we have shown, Visa
characteristic elementary abelian subgroup of G with |V/[V,G]|=2. So
Theorem 6 applies.

Obviously W = Z(G) can be chosen arbitrary large. We show that each
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automorphism a of W can be extended to an automorphism of G. First «
extends to an automorphism B of V, which leaves W invariant. Because D is a
normal subgroup of N auw (W), B induces by conjugation an automorphism y
on D. Now the pair (B, y) defines an automorphism & of G by (vd)® = v®d” for
each vd € VD = G, as one can compute directly or deduce from Kung Wei
Yang [11, theor. 2]. Thus no subgroup of W is characteristic in G.

We remark that the case n =2, excluded here, gives the dihedral group of
order 8 which is also in X.

For the case p # 2 we have another type of special p-groups with the required
properties.

Let G be a class two group generated by x,,- - -, x, subject to the relations
x?=[x,x]fori=1,---,nand[x,x]=1fori##1#j Then G/G’is elementary
abelian of order p” and G' is elementary abelian of order p"~'. Since p# 2 and
cl{G)=2, the map 6 : g » g° for each g € G is a homomorphism from G onto
G' whose kernel V is a characteristic subgroup of G. Obviously V = (G’, x,) and
V is elementary abelian. By the relations we have | V/[V,G]|=p and [V, G| =
Cv(G) such that we can apply Theorem 6 and Corollary 2 to see that G € X.
Since [V,G]=Z(G)=Cs(V)=V and Z(G)# V, we have Z(G)=[V,G]
elementary abelian of order p"~'. Obviously Z(G) can be chosen arbitrary large,
and as we show no proper subgroup of Z(G) is characteristic in G.

On H ={x,,- -, x,) the map 8 : h » h* coincides with the map k » [x,, k], so
that h? =[x, h] for all h € H. If {y,,---, y.} is another basis for H, then also
X1, ¥z ", Y are generators for G and satisfy the same relations as x,, - - -, x,.. So
there exists an automorphism of G sending x; » y; for i =2, -, n. Therefore
Aut(G)/ C awa G/ V) is isomorphic to GL(n — 1, p). Now the homomorphism
6 permutes with all automorphisms of G. Thus, Cawc)(G/ V) = Cauwc)(Z(G))
and Aut(G)/Cawc(Z(G))=GL(n - 1,p)= Aut(Z(G)).

The author is indebted to the referee for a shorter, more elegant proof of the
fact that every automorphism of Z(G) extends to an automorphism of the whole
group in our last example.
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