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ON NORMAL p-SUBGROUPS WITH LARGE 
CENTERS WHICH CANNOT BE CONTAINED 

IN THE FRATTINI SUBGROUP 

BY 

REINHARD LAUE 

ABSTRACT 

Let K be a characteristic subgroup of a p-group H such that H induces on K a 
sufficiently large group of automorphisms. Then H cannot be embedded as a 
normal subgroup contained in the Frattini subgroup in any finite group. The 
group H may have a large center without any characteristic subgroup of H 
properly contained in it. Examples are given for such H with Z(H) elementary 
abelian of arbitrary dimension. 

1. Introduction 

All groups  in this note  are assumed  to be  finite. By 3E we deno te  the class of 

n i lpotent  groups  which cannot  be  e m b e d d e d  as no rma l  subgroups  con ta ined  in 

the Frat t ini  subg roup  in some  finite group.  Gaschi i tz  [1] gave  a sufficient 

condi t ion for  a n i lpotent  g roup  to lie in 3E, which was used by var ious  authors .  

The re  was one  result  of  St i tz inger  [10], Hill and Wright  [3] which was basic for  

recent  work  on the p r o b l e m  of finding fur ther  sufficient condi t ions  for  a 

n i lpotent  g roup  to lie in Y. 

THEORE~I (Stitzinger [10], Hill and Wright  [3]). Let H be a p-group with an 

abelian characteristic subgroup A such that I A N Z(H)I  = p. A <= Z2(H) but 

A Z Z ( H ) .  Then H E Y .  

Recent ly  Hill [2] p roved  that  for  an odd p r ime  p a p - g r o u p  H with a 

character is t ic  subg roup  K such that  I K [ > I K  O Z ( H ) [  = p is in Y, and M a k a n  

[6] classified all p -g roups ,  p odd or  even,  with cyclic cerlter that  lie in 3f. 

All these  t h e o r e m s  require  that  the p - g r o u p  H has a character is t ic  subg roup  

of o rde r  p that  lies in Y. T o  m a k e  fur ther  progress  it seems  to be  necessary  to 
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have conditions which are free from this restriction. It is therefore the aim of this 

article to give such results. 

2. Results 

Following the concept of Stitzinger, Hill and Wright we consider a characteris- 

tic subgroup K of H. In addition we consider/4, the group of automorphisms of 

K that H induces on K. Suitable restrictions on the pair (K,/q)  imply H E 3~. 

We begin with two extremes: no restrictions on H in the first case and no 

restrictions on K in the second. 

THEOREM l .  

H E ~ .  

Let K be a standard wreath product of two p-groups. Then 

THEOREM 2. Let H be a Sylow p-subgroup of Aut(K).  Then H ~ 3£. 

Our other results will impose restrictions on K as well as on H. Since by a 

well-known theorem of P. Hall K~ (H) is abelian, if the class of H is less than 2i, 

H has in general several characteristic abelian subgroups. So we assume in the 

following that K is abelian. Then /4 can be considerably smaller than in 

Theorem 2. 

THEOREM 3. Let K be non-homogeneous abelian. If f I  contains Op (Aut (K)), 

the largest normal p-subgroup of Aut(K) ,  then H E ~. 

Note that by Shoda [8] I Op(Aut(K))  I = pro, where 

r - I  

m = ~ (2n, + n i + l  °F ' '  ""4- nr)(ni+, ..~--.-t- nr) 

and the homogeneous components of exponent p~ of K have order p~",. Since 

this is still a very large power of p, we analyze the structure of Aut (K)  more 

precisely. Thus we obtain an independent proof of Shoda's results and additional 

information on the subgroup structure of Aut(K) .  This gives the following 

improvement of Theorem 3. 

THEOREM 4. Let K be non-homogeneous abelian with homogeneous compo- 

nents of exponent p ' and order p '"', n, >= 0 for i = 1, . . ., r. If  n, ~ 0 and ~I contains 

one of the normal p-subgroups A, and B~ of Aut(G) ,  then H E X. The groups A, 

and B~ both have order pro', where 
i - - I  

m, = (n, + . . .  + n , ) (n ,+ ,+ . . .+  n,) + ~-~ (2hi + n,~_, + - . - +  n,)(nj.l  +-"  .+  n,). 

If we set 
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q = (K)) n CAo, K,(n,(K) n n U, (K)), 
j=l 

the definitions of A, and B, are 

A, = C, n CAu.~)(U,_.(K)/U, (K)) and 

B, = C, n CAu,,~)(a,(K) n U,_,(K)). 

Obviously the best bound in Theorem 4 is obtained if nl / 0. We formulate 

this as a corolIary. 

COROLLARY 1. Let K be as in Theorem 4 and nm riO. Then H E ~ if 

IH I ~ p  ~'', ml = (~=2n~)(E~l n,), and either ~m(K)UI(K)<=Z(H) or [ K , H ] -  < 

n 

We point out that in Corollary 1 no explicit knowledge of Au t (K)  is required. 

It can be checked in the group itself whether the hypotheses are satisfied or not. 

This is also a feature of our further results. In addition they also apply to the case 

of homogeneous abelian K which has been excluded so far. 

THEOREM 5. Let [K,H]  - CK(H) = K n Z(H) .  Then H E ~, if 
(i) there is a complement T of CK (H ) in K such that [K, H ] T is characteristic in 

H and the number of complements of [K, H] in [K, H ] T  is at most I H 1, or 

(ii) there is a complement T of [K, H]  in K such that Cr (H) n T is characteris- 

tic in H and the number complements of CK (H)/CK (H) n T in K/CK (H) n T is at 

most IF1 I. 

Of course the condition that [K, H] T or CK (H) n T be characteristic in H is a 

heavy restriction. If [K, H]  = CK (H) this hypothesis is automatically satisfied. So 

we have an important special case. 

COROLLARY 2. Let [K, H]  -- Cr(H) and [K, H] be complemented in K. Then 
H ~ ~, if the number of complements is at most ] f t  I. Especially if [K, H]  = 

Cr ( H ) is complemented in n and [ H [>= [ [ K, HI I d, where I K/[K, H]I = p ", then 

H E3i. 

From these results one can deduce the above cited Theorem of Stitzinger, Hill 

and Wright as well as the following dualization. 

THEOREM 6. If I K / [ K , n ] [ = p a n d  I K I / p ,  then H E ~ .  

Finally we give some examples of p-groups that lie in 3~ and have a large 

center. Of course one can apply Theorem 1 to construct such examples, but these 

have very large orders. Instead we construct p-groups which satisfy the 
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hypotheses of Theorem 6 and Corollary 2 and have minimal order with respect 

to these properties. In addition the center may be any elementary abelian 

p-group and every automorphism of the center extends to an automorphism of 

the whole group. In particular no proper  subgroup of the center is characteristic 

in the whole group. 

3. Notation 

Our notation is mostly standard, we refer to Huppert ' s  book [4]. For any 

subgroup U of a group G we define the normalizer NA~,~(U)  of U in the 

automorphism group Aut (G)  to be the subgroup of those automorphisms that 

leave U invariant. If F is a factor of G, the centralizer C A~,~6)(F) of F in Aut (G)  

is the subgroup of those automorphisms that induce the identity map on F. 

4. Stabilizing automorphism groups 

Most of our results are based on the observation that some automorphism 

groups of split extensions also split. 

LEMMA 1. Let M and N be normal subgroups of a group G such that 

M ~ Z ( N ) .  

(i) If N has a complement H in G define (9 to be the set of all complements of M 

in MH. 

(ii) If  M has a complement H in G define (9 to be the set of those complements U 

of M, for which N N H = N A U. 

Then in each case D = C Au~<6~(N) tq C Aut(~(G /M)  acts faithfully as a regular 

group of permutations on (9. In particular I D I = 1(9 [ and any automorphism 

group A of G that contains D and acts on (9 splits over D. 

PROOF. First we show that in eaoh case D acts on (9, which is not empty, 

since H E(9.  Now let H I E ( 9 .  In case (i) for each a E D we have H T O M  = 

(HI n M) ~ = 1 and HTM = (H~M) ~ = (HM) ~ = HM, since a centralizes G /M. 

So H~'E(9.  In case (ii) MHT=(MH~)  ~ = G  and N A H T = ( N O H 1 )  " =  

N n H1, since a centralizes M. So again H7 E (9. 

Next we observe that D acts fixpointfreely on (9. In case (i) H~ is again a 

complement of N in G :  We have NH~= NMH1= N M H  = G, and since 

(N O H~)M = N O H , M  = N N H M  = (N O H ) M  = M, also N NH~<- 

M N H~ = 1. Therefore  any a E No (HO centralizes H~ and N and is thus trivial 

on G. In case (ii) H~ is by definition a complement of M in G. Therefore  again 

any a E No (HO centralizes H~ and M and is thus trivial on G. 
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It remains to show that in each case D is transitive on ~.  So let H~ and 

/42E ~.  In case (i) for each ~ E G / N  and for i =  1,2 there is exactly one 

h , ( ~ ) E H ,  such that g = N h , ( g ) .  Since even Mh,(~,)=Mh2(g),  we have 

hz(~)-'h2(g) E M <- Z ( N ) .  In case (ii) for each g E G / M  and for i = 1, 2 there is 

exactly one h, ( ~ ) E  Hi such that ~ = Mh, (g). Since Nhl(~,)= Nh2(~,), we have 

h~(g)-'h2(g) E N <= C6(M) in this case. Now for each g E ~ there is some n E N, 

respectively n C M in case (ii), such that g = nh~(g). We define o~ : G  ~ G by 

a : nh~(g)~ nh2(~), where Nh~(g)= Nh2(~,), respectively Mh~(~)= Mh2(~). 

Then a is bijective and we show that a is a homomorphism. If g~ = n,h~(~,) and 

g2 = n2h,(g2), then 

(g,g2) ~ = (n, h ~(g~) n2h,(g2))" = (n, n ~'""-'h ~(g~) h ~(~,2)) ~ 

= (nln~,~,)-'h,(~,g2)) ~ = n,n~,~,~-lh2(g,g2) 

= n,h:(g,)n:h:(~,z)= g?g~, 

since in each case n: commutes with h,(g~) ~h:(g~). So a is an automorphism of 

G which maps Ht onto /42 and induces the identity on N and G / M  in both 

cases. 

We remark that this result is a generalization of Hilfssatz VI 7.14 of 

Huppert  [4]. 

For our  applications of Lemma 1 we collect some additional information on 

the stabilizing group D. 

L~MA 2. Let M <-_ N be two normal subgroups of a group G and let 

U <= D = CA~,~o)(N)(3 C A ~ , ~ ( G / M ) .  

(i) If G / N  is generated by d elements, then D can be embedded into 

Z ( M )  x . .  • x Z ( M ) ,  where the direct product has d factors. 

(ii) If  M <= Z ( G ) then D -~ Hom( G / N, M ). If, in addition, M = [ G, U ] and 

N = CK (U), I M I = P" and I G / N I  = p', then the minimal number of generators 

of U is at least m = m a x ( r / s , s / r ) .  

PROOF. (i) follows from [5, prop. 1.1]. 

(ii) Each a ~ D defines a homomorphism fo : g ~ g-~g" from G into M with 

ker/~ _-> N. Obviously the map ~ : a -, f,, is injective. On the other hand each 

homomorphism f : G ~ M with k e r f  _-> N defines an automorphism o~ ~ D by 

oq:g ~ g f ( g )  for each g ~ G. We claim that ~ is a homomorphism. For all 

a,/3 ~ D and g ~ G we have g"~ = (gf~(g))~ = gf~(g)f~(g), since/3 centralizes 

M and g"~ = gf~(g).  Thus for all g ~ G, f,,~(g) = f,,(g)f~(g). Therefore  ~ is an 
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isomorphism from D onto the subgroup of those elements of Hom(G, M) that 

contain N in their kernel. 

Let U = (a~,. . . ,  a . )  and ~,(a,) = / ,  where ~0 is defined as in the proof of (ii). 

Since N-<kerf~, we have l imf~l<=IG/Nt=p" for i = l , . . . , n .  If we set 

E = ( i m f ~ l i = l , . . . , n ) ,  then IEl<-_p ~". Now U centralizes G / E  such that 

[G, U] = E. Therefore p~ _-< p~", equivalently s / r  <= n. on the other hand imf, <= 

M implies I G/kerf~ I < I M I = P~ for i = 1,- . . ,  n. If we set R = f")?=, kerf,, then 

I G / R  l<=p ~. Now U centralizes R such that R <=N. Therefore IG/RI>=p" 

and p "  => p', equivalently n >= r/s. Thus the minimal number of generators of U 

is at least m = max(r/s ,s /r) .  

5. Automorphism groups of abelian groups 

Speiser [9] has analyzed the structure of the automorphism group of a finite 

abelian group by induction along the descending chain of the li, (G). This 

group-theoretic procedure allows to determine the action of certain subgroups of 

Aut(G)  somewhat better than the ring-theoretic approach of Shoda [8]. We 

therefore follow Speiser's concept. We look for normal p-subgroups of Aut (G) 

that induce a transitive permutation group on a certain characteristic family of 

subgroups of G. 

PROPOSrrION 1. Let G = G, x G2 be an abelian p-group with a homogeneous 

component G, of order p"' and exponent p. Let m be the minimal number of 

generators of G2. Set A = CAu,to)(U,(G)). Then the two normal p-subgroups 

A,  = Ca(I)~(G)) and A2 = Ca(G /II,(G)) of Aut(G)  are elementary abelian of 
order p~",+~. The intersection D = A~ fq A2 has order p'~ and lies in Z ( A  ). 

A z~ D can be regarded as a regularpermutation group on the set of all complements 

of f~l(G)li t(G)/l i , (G) in G/~3~(G). A2/D can be regarded as a regular 
permutation group on the set of all complements of f~( G ) f3 l i , (G) in fi,( G ). The 

product A,A2 is just B = CA(fI,(G)/I),(G)f3 li,(G)), and A / B  is isomorphic to 
OL(N.p). 

PROOF. We denote by (9, the set of all complements of li,(G)f3 Iql(G) in 

f~,(G) and by (92 the set of all complements of fI,(G)I31(G)/li,(G) in G/li~(G). 

We claim that G, E (9, and Gz/~3~(G)E (92. First li~(G) =/J~(G2) < G2 and 

I)~(G2)<-II~(G2), since G2 has no homogeneous component of exponent 
p. Therefore (I~,(G) fq II,(G))G, = III(G)G, f3 I),(G) = II,(II1(G))f~,(G0 = 

I)I(G=)G~ = fI,(G) and fl , (G) fq U~(G) N G~ = li~(Gl) = 1, such that G, ~ (0,. 
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Similarly G2 n fI,(G)U~(G) = (fl,(G) n G2)U,(G) = f~,(G2)U,(G) = U~(G) and 

G2~,(G)U~(G) = G2GI = G, such that G2/~3~(G)E 92. 

Now f~(G) /O~(G)n  U,(G) is isomorphic to G1 such that A induces on the 

factor an automorphism group which is contained in Gl(n,, p). Each automorph- 

ism of G~ can be extended to an automorphism of G that centralizes G~ and thus 

lies in A. Therefore A / B  -~ Gl(nl ,p) .  Now B centralizes O~(G)n  U~(G) and 

f l~(G)/f~(G) O U~(G). Therefore by Lemma 1, B acts fixpointfreely on .f~)~. 

Since B contains C1 = CA~,~(G:)N CAo,~(G/f~(G)NU~(G)) ,  which is al- 

ready regular on ~ by Lemma 1, also B acts regularly on 5"~,. As well B 

centralizes G / ~ ( G ) U ~ ( G )  and ~3~(G)OI(G)/~3~(G), since the latter factor is 

covered by I~(G)/Iqt(G)AU~(G).  Therefore again by Lemma 1, B acts 

fixpointfreely on ~ .  Since B contains C2 = 

C~,to)(G/G~)NC~, ,~(UI(G)f~(G)) ,  which is already regular on .f)~ by 

Lemma 1, also B acts regularly on ~ .  By Lemma 2 (ii) we obtain I B /A~ I = 

p"~ = IB /A: I .  Now C~ is already contained in A~ and C: is contained in AI. 

Therefore A~ covers B/A~ and A~ covers B / A :  such that A ~ A : = B  and 

I B /A~  N A2 t = p2.,,.. In addition A~ is regular on .f): and A2 is regular on ,~)~. 

Finally we have CA~,¢a)(U,(G)) = Cnu,¢a)(G ~Urn(G)), see Speiser [9, p. 129], such 

that Al = CA,,~o~(fI~(G)) n CA.,~a)(G/~(G)) and A2 = 

CA,,ta)(U~(G))N CA.,~a)(G/~3~(G)) are elementary abelian by Lemma 2. In 

addition, the Three-Subgroup-Lemma yields 

[D,A, G] <-_ [A, G,O] [G,D,A] <-[tI ,(G),DI[O,(G)A U,(G), A ] = 1 

such that D <= Z ( A  ). 
Observing that every automorphism of UI(G). can be extended to an au- 

tomorphism of G, one has Aut(G)/CA.,t~)(UI(G))-~ Aut (U~(G)). So inductive 

application of Proposition 1 gives a description of Aut(G) .  

PROPOSITION 2. Let G = G~ x • • • x G, be an abelian p-group with homogene- 

ous components G~'of exponent p~ and order p~", for i = 1, . . . ,  r. We set F~ = 

O~(G)AU,_I (G) /~I (G)NU,(G)  and ~, = {H, [Hi is a complement of 

I'II(G)O~3~(G) in f~(G)NI3,_,(G)}, ~ ={K~ I K~ is a complement of 

U , ( G ) ( f / I ( G ) O U ,  , (G))/U,(G) in U,-I(G)/U,(G)} for i = l , . . . , r .  Then 

A ut (G )  contains normal p-subgroups A~ and B~ that act transitively on ,f)~ 

respectively ,~L for i = 1,. •., r. If  we set C, = CAu,lo~(U, (G)) n 

/"]i=~ CA~,~(Fj), then A, = C~ N CA~,~o~(U,-~(G)/U, (G)) and B~ = 

C~ n CA,,(a~(fI~(G) n U,-~(G)). The orders are 
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i - I  

IA, l = l B ,  J= pm',m, = ~ (2nj + n[+l + . . . +  nr)(nj.l  + . . . +  nr ) 
j = t  

+(n, + n,+, + . . . +  n,)(n,+, + . . . +  nr). 

PROOF. We proceed by induction on i. For i = 1 we apply Proposition 1. So 

let Proposition 2 be proved for LI~(G). Then Aut(G)/CAu,o~(UI(G)) contains 

normal p-subgroups A */CAu,~o~(~31(G)) and B */CAu,o)(~I,(G)) as claimed. The 

definitions of A * and B*~ are 

A * = CA.,,o,(~3, (/3,(G))) N CA.,,c,(I3,_,(~3,(G))/I3, (~3t(G))) N (~ CA~,,~,(~) 
i - 2  

= ( o ) / U , + , ( O ) ) n  
i=2 

and similarly 

B * = C~u,,~,(O,+,(O)) n CAo, ,~ , (n , (O)  n U, (O))  n r~ CAu,,~,(F./). 
i=2 

Now A~÷, = A * N CA~,o~(F,) and B,+, = B *  G CAu,¢c)(F,) for i = 1, .-  -, r - 1, 

and A ,  and B, are just A~ and A2 in Proposition 1. Since CA~,¢o~(~I(G)) is 

contained in A* and B*, both groups induce on F~ the full automorphism 

group G L ( m , p )  of F ,  Therefore A*=A,+~CAo,~c~(I3~(G)) and B * =  

Bi+~ CAut(G)(~I(G)) and A,+~ tq CAut(o)(~Jl(G)) = C ,  = B,+, fq CAm(6)(~..~,(G)). By 

inductive hypothesis A * is transitive on ©~+,, and since CA.,t6)(I3~(G)) acts trivial 

on ~),+,, also A,+z is transitive on ©,.~. By the same argument B~+t is transitive on 

.~t~+t. The formula for the orders of the A~ and B~ easily follows by induction 

from Proposition 1. 

REMARK. For i = r in Proposition 2 we obtain C, = A, = B, = Op(Aut(G)) 

and I Aut (G)/C~ l =IIT=, I GL (n, p)l. Since Aut (G) has a subgroup isomorphic 

to II[ 1Aut(G,), which covers Aut(G)/C, ,  in fact Aut(G) /C,  ~ I][=~ GL(n~,p). 

6. Proofs of the Theorems 

Most of our results are consequences of the following well-known fact. 

LEMMA 3. Let G act on a set g) and let N be a normal subgroup of G that acts 

transitively on #). Then for each H E ~ we have G = NN~(H) .  In particular 

I©l > 1 implies N;~ dP(G). 

This follows easily by the Frattini argument. 
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Now for all of our proofs we assume that our p-group H is a normal subgroup 

of a group G contained in 4p(G). We denote by f the natural homomorphism 

from G into Aut (K)  such that f(H) = fI  <_- f(ap(G)) <- ap(f(G)) by Gasch/itz's 

Satz 3 [1]. So we only have to find a contradiction in this situation for each 

theorem. 

PROOF OF THEOREM 1. Let K = AwrB, where A and B are p-groups. If B 

and A have order two, then K is the dihedral group of order 8 and K E ~, in 

particular H E ~. In all other cases by P. M. Neumann's theorem 9.1 [7] the base 

group of K is characteristic in K. Therefore Aut (G) acts as a permutation group 

on the set g) of all complements of the base group. By P. M. Neumann's theorem 

10.1 [7] In (K) is transitive on 9- Therefore Lemma 3 gives the contradiction. 

PROOF OF THEOREM 2. By Huppert [4, III 3.8] each prime divisor of 

t~(f(G))l divides If(G)/c~(f(G))l. But the hypothesis implies that q~(f(G)) 

contains a Sylow p-subgroup of f(G), a contradiction. 

PROOF OF THEOREM 3. By the remark after the proof of Proposition 2, 

O, (Aut (K))  has a supplement in Aut (K)  if K is not homogeneous. So by our 

hypothesis H has a supplement in f(G), a contradiction. 

PROOF OF THEOREM 4. If n ,~0 ,  then 9,  and ,~, have more than one 

element. Since Aut (K)  acts on ©~ and .~, also f (G) acts on these sets. If A~ -</~ 

or B~ =</-t, then by Proposition 2 / ~  is transitive on one of these sets. Therefore 

Lemma 3 gives the contradiction. 

PROOF OF COROLLARY I. The hypotheses imply either H -- A1 or /4 = B1. 

Therefore we have a special case of Theorem 4. 

PROOF OF THEOREM 5. Obviously 

ISI < D = C^u,,K~(CK (H)) n CAuttK)(K/[K, n] ) .  

Our hypotheses (i) and (ii) correspond to (i) and (ii) in Lemma 1 such that D 

acts regularly on the set of complements of [K,H]  in [K,H]  T in case (i), 

respectively of CK(H)/CK(H)N T in K/CK(H)D T in case (ii). Thus our 

hypothesis on the order of f(H) gives f(H) = D in each case. The hypothesis 

that [K, HI  T, respectively CK(H) n T, be characteristic in G yields that G acts 

on ,~. Therefore Lemma 3 gives the contradiction. 

We have to prove the second part of Corollary 2. So let l / t l _ -  > I[K, H]I d, 

where IK/[K,H]I=p d. Since H centralizes K/[K,H] and [K,H], f t  lies in 

D = CA~,tK,([K, H])  fq CA~,,~(K/[K, H]). By Lemma 2 (i) ] D I =< I[K, H]I", 
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where n is the minimal number of generators of K/[K, H]. Since I[K, H]I  n < 

I/~ t =< I D I ---- I[ K, H]  I", we have n = d and H = D. By Lemma 1, D is equal to 

the number of complements of [K, H]  in K. So we can apply Theorem 5. 

PROOF OF THEOREM 6. If C-< K and C is normal in G, then do(G/C)= 
do(G)/C, see Gasch/itz [1, Satz 2]. Therefore  also H/C <= dO(G/C) and we can 

assume C = 1. If [K, H]  = do(K), then K is cyclic and has only characteristic 

subgroups. Then we set U2(K)= 1. We have I K I = p 2  and /-1 is a Sylow 

p-subgroup of Aut (K) .  Therefore  we can apply Theorem 2. If [K, H ]  _-< do(K), 

then we set do(K) = 1 and K is elementary abelian. Now [K, H, H]  -< [K, H]  and 

[K, H, H]  is normal in G, since K and H are normal in G. Therefore  we assume 

[K, H, HI  = 1 and we have [K, HI  = CK(H) and I K/[K, H]I = p. Now Lemma 2 

(iii) shows that I H l i s  at least IlK, H]I.  Since K is elementary abelian, we can 

apply Corollary 2 to obtain the result. 

In a dual way we obtain a proof for the Theorem of Stitzinger, Hill and 

Wright, cited in the introduction. Instead of do(A) we consider lql(A). If 

A M Z ( H ) = f ~ , ( A ) ,  then A is cyclic and we can assume I A l = p  2. Since 

A ~ Z(H), H induces on A an automorphism group of order p. Then Theorem 

2 yields a contradiction. If ~ , ( A ) > A  NZ(H), then we set K = I ~ I ( A ) .  

Now [K,H,H]<-[Z2(H),H,H] =1, and I~[K,H]<=CK(H)=KMZ(H) = 
A M Z(H) implies [K,H] = CK(H) and I[K,H]I =p. Again Lemma 2 shows 

that I H I  = I K/[K, H]I, and we can apply Corollary 2 to obtain the result. 

7. Examples of special p-groups that lie in 

Our first example settles the case p = 2. Here  we can construct a semidirect 

product which has the required properties. 

Let V be elementary abelian of order 2", n > 3, and W a subgroup of order  

2 "-~. Then by Lemma 2 (ii) the automorphism group D = CAu,tv)(W) is 

isomorphic to W. Let G be the semidirect product VD, where D acts on V in 

the natural way. We claim that V is a characteristic subgroup of G So let 

a E A u t ( G )  and K = V ~. Then K = C~(K), since V = C6(V). Now WD = 
W × D is abelian of order I W 12 ~ { V I. So K cannot be contained in WD. Let 

g E K and g f~ WD. Then g = vd with some v E V\ W and some d ~ D. Since 

W = Cv(D),  we have [v, d] g 1 for d g  1. On the other hand [v, d] = (vd) 2 = 1, 
since K is elementary abelian. So d = 1 and V = K. As we have shown, V is a 

characteristic elementary abelian subgroup of G with I V/[V,G]]=2. So 

Theorem 6 applies. 

Obviously W = Z(G) can be chosen arbitrary large. We show that each 
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automorphism a of W can be extended to an automorphism of G. First o~ 

extends to an au tomorphism/3  of V, which leaves W invariant. Because D is a 

normal subgroup of NAo,(v~(W), /3 induces by conjugation an automorphism 

on D. Now the pair (/3, "i') defines an automorphism 6 of G by (vd) 8 =- rod ~ for 

each vd E VD = G, as one can compute  directly or deduce from Kung Wei 

Yang [11, theor. 2]. Thus no subgroup of W is characteristic in G. 

We remark that the case n = 2, excluded here, gives the dihedral group of 

order 8 which is also in .:~. 

For the case p ~ 2 we have another  type of special p-groups with the required 

properties.  

Let G be a class two group generated by x , , - . . , x ,  subject to the relations 

x, p= [x~,x~] for i = 1 , . . . ,  n and [x~,xj] = 1 for i / 1 / / ' .  Then G/G ' i s e l emen tary  

abelian of order p"  and G '  is e lementary abelian of order p"-~. Since p / 2  and 

c l (G)  = 2, the map 0 : g m gP for each g ~ G is a homomorphism from G onto 

G '  whose kernel V is a characteristic subgroup of G. Obviously V = (G ' ,  x~) and 

V is e lementary abelian. By the relations we have I V/[V,  G]I = p and [V, G]  = 

Cv(G)  such that we can apply Theorem 6 and Corollary 2 to see that G E .~f. 

Since [V,G]<=Z(G)<=CG(V)  = V and Z ( G ) ~  V, we have Z ( G ) = [ V , G ]  

elementary abelian of order p . - l .  Obviously Z ( G )  can be chosen arbitrary large, 

and as we show no proper  subgroup of Z ( G )  is characteristic in G. 

On H = (x2,-" ",x,)  the map 0 : h ~ h p coincides with the map k ~ [x , ,h] ,  so 

that h p = [ x , h ]  for all h ~ H. If {y2," ",y,} is another  basis for H, then also 

x,, y2, • • ", Y, are generators for G and satisfy the same relations as x~, • •., x,. So 

there exists an automorphism of G sending x~ ~ y~ for i = 2,. •., n. Therefore  

Aut ( G ) / C A u , ~ ( G / V )  is isomorphic to G L ( n  - 1, p). Now the homomorphism 

0 permutes  with all automorphisms of G. Thus, C A u , t ~ ( G / V )  = CAo~G~(Z(G)) 

and Aut (G) /CA~, ,~ , (Z (G) )  ~- G L ( n  - 1, p)  ~ A u t ( Z ( G ) ) .  

The author is indebted to the referee for a shorter, more elegant proof of the 

fact that every automorphism of Z ( G )  extends to an automorphism of the whole 

group in our last example. 
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